Bernoulli equation

Newton’s 2nd law F=m-a

Fluid accelerates and decelerates as it moves in the flow field due to the action of:
* pressure

« gravity

« friction (viscous forces)

* surface tension

« efc.

For an inviscid fluid (low viscosity or when viscous effects are negligible), the main forces to consider are
a) pressure, and
b) gravity



Streamlines in steady flow
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Acceleration In curvilinear coordinates

Flow in the x-z plane Flow in terms of streamline and normal coordinates
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Acceleration In curvilinear coordinates
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How to balance gravity and pressure
on an isolated fluid particle?
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Derivation of Bernoulli’s equation
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Free-body diagram of a fluid particle for which the important forces are those
due to pressure and gravity.



Bernoulli’s equation along a streamline
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Bernoulli’s equation across a streamline
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Balancing ball

According to the Bernoulli equation, an increase in velocity can cause a decrease in pressure.

The table tennis ball is supported by a jet of air. The net vertical air force is balanced by the ball's weight. If the ball
is displaced from the center of the jet, the air velocity past the ball is greater on the side near the jet's center than it

is on the side near the jet's edge. Thus, the pressure on the ball is lower near the center, and the ball returns to its
stable equilibrium position centered in the air jet



Stagnation points on bodies in flowing fluids
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Example: pressure on a tennis ball
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Example: Bernoulli equation across a streamline
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Determine the pressure variation between: -
a) points (1) and (2)
b) points (3) and (4)
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Kinetic, potential and pressure energy
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Kinetic, potential and pressure energy
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Static, stagnation, total and dynamic pressure
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The Pitot-static tube.
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Incorrect and correct design of static pressure taps.
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Cross-section of a directional-finding Pitot-static tube.
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Continuity principle
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Pressure variation and cavitation in a variable area pipe
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Example

1) Bernouilli 1 - 3
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3) Cavitation when lowest pressure reaches p=p,

Until what height H can water be

siphoned out of the tank before
cavitation occurs? p, = 1.765 kPa for water at 15°C

p, = 1.765 kPa—101.3 kPa P1=0 2
gage pressure

1) + 2) + 3): -99.5 kPa = 9.8 kN/m3 (4.6 m - H) — %2(1000 kg/m?3)(10.9 m/s)?2
H=86m



Tip cavitation from a propeller




Flowrate measurement
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Sluice gate
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Typical contraction coefficients for different
outlet configurations

Ce=A[/A, = (d/d,)




